• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hydroxide Formation and Carbon Species Distributions During High-Temperature Kraft Black Liquor Gasification

    Thumbnail
    View/Open
    dance_michael_r_200508_mast.pdf (1.017Mb)
    Date
    2005-07-18
    Author
    Dance, Michael Raymond, Jr.
    Metadata
    Show full item record
    Abstract
    This work focuses on high-temperature kraft black liquor gasification in the presence of H2O and CO2 in a laboratory-scale Laminar Entrained-Flow Reactor (LEFR). The effects of gasification conditions on hydroxide formation, carbon gasification rate, carbonate carbon and fixed carbon levels, alkali metal and sulfur species retention, and char yield were studied at atmospheric pressure and at 900-1000oC, and at residence times of 0.5-1.5 s. The results suggest that carbon gasification rates may be enhanced in the presence of H2O and CO2, with fixed carbon conversions of up to 95% at the earliest residence times at 1000oC. CO2 and H2O gasifying agents cause a significant increase in carbonate formation, with 22% of the initial carbon input forming carbonate as compared to 16% with one gasifying agent. Carbonate levels increase to a maximum level and then decrease at 900oC, but at 1000oC, carbonate decomposition processes are more dominant and cause lower levels of carbonate even at early residence times. The results show that alkali metal retention is high until vaporization occurs after 1.4 s at 900oC and at early residence times at 1000oC. Moreover, the results indicate that sulfur retention is an exothermic process, as sulfur capture increases with temperature. At 900oC, no hydroxide is produced until after 1.4 s, but at 1000oC, hydroxide appears to form readily even at the earliest residence times studied. The char product yields a maximum mole percent of 18-19% hydroxide, starting at intermediate residence times at 1000oC. Generally, hydroxide is not produced until fixed carbon conversions approach 95%. The results can be explained in terms of the interactions of phenolate and carboxylate catalytic moieties in the char product. The hydroxide formation results suggest that it may be possible to develop a gasification-causticization process that does not require external chemicals and would make the energy-efficient and environmentally friendly black liquor gasification technology an economic reality.
    URI
    http://hdl.handle.net/1853/7189
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Chemical and Biomolecular Engineering Theses and Dissertations [1516]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology