• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and Optimization of Microwave Circuits and Systems Using Artificial Intelligence Techniques

    Thumbnail
    View/Open
    pratap_rana_j_200508_phd.pdf (1.706Mb)
    Date
    2005-07-19
    Author
    Pratap, Rana Jitendra
    Metadata
    Show full item record
    Abstract
    In this thesis, a new approach combining neural networks and genetic algorithms is presented for microwave design. In this method, an accurate neural network model is developed from the experimental data. This neural network model is used to perform sensitivity analysis and derive response surfaces. An innovative technique is then applied in which genetic algorithms are coupled with the neural network model to assist in synthesis and optimization. The proposed method is used for modeling and analysis of circuit parameters for flip chip interconnects up to 35 GHz, as well as for design of multilayer inductors and capacitors at 1.9 GHz and 2.4 GHz. The method was also used to synthesize mm wave low pass filters in the range of 40-60 GHz. The devices obtained from layout parameters predicted by the neuro-genetic design method yielded electrical response close to the desired value (95% accuracy). The proposed method also implements a weighted priority scheme to account for tradeoffs in microwave design. This scheme was implemented to synthesize bandpass filters for 802.11a and HIPERLAN wireless LAN applications in the range of 5-6 GHz. This research also develops a novel neuro-genetic design centering methodology for yield enhancement and design for manufacturability of microwave devices and circuits. A neural network model is used to calculate yield using Monte Carlo methods. A genetic algorithm is then used for yield optimization. The proposed method has been used for yield enhancement of SiGe heterojunction bipolar transistor and mm wave voltage-controlled oscillator. It results in significant yield enhancement of the SiGe HBTs (from 25 % to 75 %) and VCOs (from 8 % to 85 %). The proposed method is can be extended for device, circuit, package, and system level integrated co-design since it can handle a large number of design variables without any assumptions about the component behavior. The proposed algorithm could be used by microwave community for design and optimization of microwave circuits and systems with greater accuracy while consuming less computational time.
    URI
    http://hdl.handle.net/1853/7225
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Electrical and Computer Engineering Theses and Dissertations [3381]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology