• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solving a mixed-integer programming formulation of a classification model with misclassification limits

    Thumbnail
    View/Open
    brooks_j_paul_200512_phd.pdf (1.077Mb)
    Date
    2005-08-25
    Author
    Brooks, J. Paul
    Metadata
    Show full item record
    Abstract
    Classification, the development of rules for the allocation of observations to one or more groups, is a fundamental problem in machine learning and has been applied to many problems in medicine and business. We consider aspects of a classification model developed by Gallagher, Lee, and Patterson that is based on a result by Anderson. The model seeks to maximize the probability of correct G-group classification, subject to limits on misclassification probabilities. The mixed-integer programming formulation of the model is an empirical method for estimating the parameters of an optimal classification rule, which are identified as coefficients of linear functions by Anderson. The model is shown to be a consistent method for estimating the parameters of the optimal solution to the problem of maximizing the probability of correct classification subject to limits on inter-group misclassification probabilities. A polynomial time algorithm is described for two-group instances. The method is NP-complete for a general number of groups, and an approximation is formulated as a mixed-integer program (MIP). The MIP is difficult to solve due to the formulation of constraints wherein certain variables are equal to the maximum of a set of linear functions. These constraints are conducive to an ill-conditioned coefficient matrix. Methods for generating edges of the conflict graph and conflict hypergraphs are discussed. The conflict graph is employed for finding cuts in a branch-and-bound framework. This technique and others lead to improvement in solution time over industry-standard software on instances generated by real-world data. The classification accuracy of the model in relation to standard classification methods on real-world and simulated data is also noted.
    URI
    http://hdl.handle.net/1853/7473
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Industrial and Systems Engineering Theses and Dissertations [1457]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology