• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Role of Sphingolipids in Cortisol Synthesis in the Adrenal Cortex

    Thumbnail
    View/Open
    ozbay_tuba_s_200512_mast.pdf (2.696Mb)
    ozbay_tuba_s_200512_mast.mov (23.58Mb)
    Date
    2005-11-27
    Author
    Ozbay, Tuba Selcuk
    Metadata
    Show full item record
    Abstract
    In the human adrenal cortex, adrenocorticotropin (ACTH) activates steroid hormone biosynthesis by acutely increasing cholesterol delivery to the mitochondria and chronically up-regulating the transcription of steroidogenic genes (including CYP17). Sphingolipids are a diverse family of phospholipids and glycolipids that mediate a wide variety of cellular processes, including apoptosis, proliferation, and survival. Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that regulate genes that are involved in cholesterol biosynthesis and fatty acid metabolism. In this study, we investigated the role of sphingolipids in ACTH-dependent steroidogenesis. H295R human adrenocortical cells were treated with ACTH or dibutyryl cAMP (Bt2cAMP) for various time periods and the content of several sphingolipid species was quantified by mass spectrometry. Both ACTH and Bt2cAMP decreased cellular amounts of sphingomyelin, ceramides, sphingosine (So) and sphingosine-1-phosphate (S1P). However, both ACTH and Bt2cAMP increased the activity of sphingosine kinase and the amounts of S1P released into the media. Both So and S1P increased CYP17 mRNA expression and increased cortisol biosynthesis. This increase in CYP17 transcription occurs by promoting SREBP binding to an SRE at -450/-436 basepairs upstream of the transcription initiation site. Furthermore, chromatin immunoprecipitation (ChIP) assays revealed that Bt2cAMP and S1P treatment results in an increase in acetylation of histone H3 and SREBP1 binding to CYP17 promoter. Additionally, transient transfection studies using wild type or mutated hCYP17 promoters and RNA interference (RNAi) assays confirmed the role of SREBP1 in mediating the stimulatory effect of S1P on CYP17 transcription. In summary, our studies demonstrate a link between sphingolipid metabolism and ACTH-dependent steroidogenesis which requires the activation of SREBP1 in human adrenal cortex.
    URI
    http://hdl.handle.net/1853/7549
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Biology Theses and Dissertations [464]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology