• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of Integrin-mediated Cell Adhesion Strengthening Using Surfaces Engineered to Control Cell Shape and Focal Adhesion Assembly

    Thumbnail
    View/Open
    gallant_nathan_d_200412_phd.pdf (935.3Kb)
    Date
    2004-11-29
    Author
    Gallant, Nathan D.
    Metadata
    Show full item record
    Abstract
    Cell adhesion to extracellular matrix proteins is critical to physiological and pathological processes as well as biomedical and biotechnological applications. Cell adhesion is a highly regulated process involving initial receptor-ligand binding, and subsequent clustering of these receptors and rapid association with the actin cytoskeleton as focal adhesions are assembled. Focal adhesions enhance adhesion, functioning as structural links between the cytoskeleton and the extracellular matrix and triggering signaling pathways that direct cell function. The objective of this thesis research is to develop a mechanical and biochemical analysis of the adhesion strengthening response. Our central hypothesis was that focal adhesion size and position regulate cell adhesion strength by controlling the distribution of mechanical loading. We engineered micropatterned surfaces to control the size and position of focal adhesions in order to analyze the contributions of these specialized adhesive structures to adhesion strengthening. By applying surface micropatterning techniques, we showed robust control over cell-substrate contact area and focal adhesion assembly. Using a hydrodynamic shear assay to quantify adhesion strength to micropatterned substrates, we observed significant adhesive area- and time-dependent increases in adhesion strength. Complimentary biochemical assays allowed us to probe the role of structural proteins recruited to focal adhesions and examine the structure-function relationships between these adhesive structures and adhesion strength. These findings provide insights into the role of focal adhesions in adhesion strengthening, and may contribute to tissue engineering and biomaterials applications.
    URI
    http://hdl.handle.net/1853/7601
    Collections
    • Georgia Tech Theses and Dissertations [23403]
    • School of Mechanical Engineering Theses and Dissertations [4008]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology