• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparative Genomics of Microbial Signal Transduction

    Thumbnail
    View/Open
    ulrich_luke_e_200512_phd.pdf (7.507Mb)
    Date
    2005-11-28
    Author
    Ulrich, Luke
    Metadata
    Show full item record
    Abstract
    High-throughput genome processing, sophisticated protein sequence analysis, programming, and information management were used to achieve two major advances in the comparative genomics of microbial signal transduction. First, an integrated and flexible bioinformatics platform and the Microbial Signal Transduction database (MiST) were developed, which facilitated the genome-wide analysis of bacterial signal transduction. This platform was used successfully for the high-throughput identification and classification of signal transduction proteins in more than 300 archaeal and bacterial organisms. Second, analysis of information encoded in prokaryotic genomes revealed that the majority of signal transduction systems consist of one-component systems a single protein containing both input and output domains but lacking phosphotransfer domains typical of two-component systems. The prevalence of one-component systems is a paradigm-shifting discovery because two-component systems are currently viewed as the primary mode of signal transduction in prokaryotes. One-component systems are more widely distributed among bacteria and archaea and display a greater diversity of domains than two-component systems. Additionally, in-depth bioinformatic analyses were performed that further characterized the function of two, input, signaling domains. In summary, this systematic, high-throughput delineation of microbial signal transduction is another step forward in our understanding of the genomic basis of life.
    URI
    http://hdl.handle.net/1853/7632
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • School of Biology Theses and Dissertations [464]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology