• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Multifunctional Approach to Development, Fabrication, and Characterization of Fe3O4 Composites

    Thumbnail
    View/Open
    liong_silvia_200512_phd.pdf (5.485Mb)
    Date
    2005-11-14
    Author
    Liong, Silvia
    Metadata
    Show full item record
    Abstract
    A unique approach for lightweight multifunctional composites was developed using Fe3O4 nanoparticles and polypyrrole-coated Fe3O4 particles as fillers. Fe3O4 particles are a good candidate for filler in a multifunctional composite system because they can reinforce mechanical properties of a polymer matrix and impart magnetic properties into a composite. Polypyrrole coating on Fe3O4 particles was utilized to incorporate electrical conductivity to the properties of composites. The effects of filler size and filler content were studied on both the mechanical and electromagnetic properties. Fe3O4 nanoparticles improved fracture toughness, but they compromised strength and modulus. Polypyrrole-coated Fe3O4 has potential for multifunctional material applications because the coating allows for concurrent increase in magnetic permeability and electrical conductivity in a composite. The polypyrrole coating also improved the strength of the composite. Fe3O4 nanoparticles were a major part of this work from their synthesis to their application in composites. The surface effect on magnetic properties was analyzed for Fe3O4 nanoparticles, resulting in a more accurate calculation of the magnetically dead layer thickness than previously reported. The results from this work contributed to further understanding of synthesis and characterization of magnetic nanoparticles, fabrication and characterization of nanocomposites, and design and development of lightweight multifunctional materials. Although the properties of the fabricated composites require further improvement, the methodology and approach provide a basis for future work in development of lightweight multifunctional composites.
    URI
    http://hdl.handle.net/1853/7640
    Collections
    • Georgia Tech Theses and Dissertations [23878]
    • School of Materials Science and Engineering Theses and Dissertations [986]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology