• Login
    View Item 
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    •   SMARTech Home
    • Georgia Tech Theses and Dissertations
    • Georgia Tech Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Effects of Retention Aid Dosage and Mechanical Energy Dissipation on Fiber Flocculation in a Flow Channel

    Thumbnail
    View/Open
    Weseman 9490 Thesis.pdf (23.43Mb)
    Date
    2004-12-23
    Author
    Weseman, Brian D.
    Metadata
    Show full item record
    Abstract
    Formation plays an important role in the end-use properties of paper products, but before formation can be optimized to achieve superior properties, an understanding about the causes of formation must be developed. Formation is caused by variations in the basis weight of paper that are results of fiber floc formation before and during the forming of the sheet. This project is a first step in a larger research program aimed at studying formation. By observing the effects that mechanical energy dissipation (in the form of turbulence) and retention chemical dosage have on floc formation, we may develop a better understanding of how to control formation. In this study, a rectangular cross-section flow channel was constructed to aid in the acquisition of digital images of a flowing fiber suspension. The furnish consisted of a 55:45 spruce:pine bleached market pulp mix from a Western Canadian mill. Turbulence was varied by changing the flow rate; Reynolds numbers achieved range from 20,000 to 40,000. The retention aid used was a cationic polyacrylamide with a medium charge density. Dosage of the retention aid was varied from 0 to 2 pounds per ton OD fiber. Digital images of the flowing fiber suspension were acquired with a professional digital SLR camera with a forensics-quality lens. Three separate image analysis techniques were used to measure the flocculation state of the fiber suspension: morphological image operations, formation number analysis, and fast Fourier transform analysis. Morphological image analysis was capable of measuring floc size increases seen in the acquired floc images. It was shown how floc diameter could increase simultaneously with decreasing total floc area and total floc number. A regression model relating retention aid dosage and energy dissipation was constructed in an effort to predict flocculation. The regression model was used to predict F2 (formation number squared) results from the study. The interaction effect RE was shown to have a differing effect across the retention aid dosage levels. As a result, this model and technique may prove to be a beneficial tool in optimizing retention aid applications.
    URI
    http://hdl.handle.net/1853/7960
    Collections
    • Georgia Tech Theses and Dissertations [23877]
    • IPST Theses and Dissertations [514]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology