• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Space Systems Design Lab (SSDL)
    • Space Systems Design Lab Technical Papers
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Space Systems Design Lab (SSDL)
    • Space Systems Design Lab Technical Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In-Space Deployment Options for Large Space Solar Power Satellites

    Thumbnail
    View/Open
    IAA-00-R.2.02.pdf (443.8Kb)
    Date
    2000-10
    Author
    Olds, John R.
    Way, David Wesley
    Charania, Ashraf
    Budianto, Irene Arianti
    Marcus, Leland R.
    Metadata
    Show full item record
    Abstract
    This research was performed at the Space Systems Design Lab at the Georgia Institute of Technology, Atlanta, GA, with the charter of identifying economically attractive candidate space transfer vehicle systems for ferrying components of Space Solar Power (SSP) satellites from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO). An aggressive price goal of only $400/kg of payload was established in order to control the cost of transportation for the SSP satellite developer. A multi-step decision process was employed to down-select from a large number of candidate systems to four. The final four concepts were Nuclear Thermal Rocket (NTR), Solar Thermal Rocket (STR), a rotating tether, and Solar Electric Propulsion (SEP). Additional concepts considered were Dual-Mode (Chemical/SEP) and All-Chemical. Results show that the most economical concept is one which is highly reusable, has a short turn-around time, a long vehicle life, and small propellant requirements. These characteristics result in a low fleet size and therefore lower debt requirements. These characteristics also lower the Initial Mass in Low Earth Orbit (IMLEO) and therefore lower deployment costs. The goal of $400/kg, or 2.5cents/kW-hr, for in-space transportation costs is very aggressive and difficult to achieve.
    URI
    http://hdl.handle.net/1853/8404
    Collections
    • Space Systems Design Lab Technical Papers [108]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology