• Login
    View Item 
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Space Systems Design Lab (SSDL)
    • Space Systems Design Lab Technical Papers
    • View Item
    •   SMARTech Home
    • College of Engineering (CoE)
    • Daniel Guggenheim School of Aerospace Engineering (AE)
    • Space Systems Design Lab (SSDL)
    • Space Systems Design Lab Technical Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrating Aeroheating and TPS into Conceptual RLV Design

    Thumbnail
    View/Open
    aiaa_99-4806.pdf (677.8Kb)
    Date
    1999-11
    Author
    Cowart, Karl K.
    Olds, John R.
    Metadata
    Show full item record
    Abstract
    The purpose of this study is to develop the Thermal Calculation Analysis Tool (TCAT) that will enable Aeroheating and Thermal Protection System (TPS) sizing to be, an on-line, automated process. This process is described as dynamic on-line TPS sizing. It enables the assumptions made about the vehicle TPS to be updated through out the iteration-process. This method is faster and more accurate than a static offline process where the assumptions of the vehicle TPS are held constant during the vehicle design procedure. TCAT will work in conjunction with other engineering disciplines in a Design Structure Matrix (DSM). The unsteady, one dimensional heat diffusion equation was discretized, and resulted in a tridiagonal system of non-linear algebraic equations. This system was implicitly solved using the iterative Newton-Raphson technique at each time level. This technique was conducted for both steady-state and transient conditions that predicted the temperature profiles, and in-depth conduction histories for several TPS material test cases. Also, this was performed on several disparate TPS materials layered together at one time. Finally; comparative benchmark solutions of the TCAT transient analyses were conducted using the commercial software code SINDA/G. Results show that TCAT performed as predicted, and will satisfy the requirement of lowering the amount of time required to conduct TPS sizing for a reusable launch vehicle. Future work will consist of adding temperature dependent material properties to TCAT, coupling TCAT to an optimizer, and creating a web-interface that will enable cross-platform operation of TCAT.
    URI
    http://hdl.handle.net/1853/8415
    Collections
    • Space Systems Design Lab Technical Papers [108]

    Browse

    All of SMARTechCommunities & CollectionsDatesAuthorsTitlesSubjectsTypesThis CollectionDatesAuthorsTitlesSubjectsTypes

    My SMARTech

    Login

    Statistics

    View Usage StatisticsView Google Analytics Statistics
    facebook instagram twitter youtube
    • My Account
    • Contact us
    • Directory
    • Campus Map
    • Support/Give
    • Library Accessibility
      • About SMARTech
      • SMARTech Terms of Use
    Georgia Tech Library266 4th Street NW, Atlanta, GA 30332
    404.894.4500
    • Emergency Information
    • Legal and Privacy Information
    • Human Trafficking Notice
    • Accessibility
    • Accountability
    • Accreditation
    • Employment
    © 2020 Georgia Institute of Technology