Show simple item record

dc.contributor.authorOlds, John R.en_US
dc.contributor.authorLedsinger, Laura Anne
dc.date.accessioned2006-03-17T15:59:54Z
dc.date.available2006-03-17T15:59:54Z
dc.date.issued1998-01
dc.identifier.urihttp://hdl.handle.net/1853/8430
dc.descriptionA companion paper to an AIAA Off-the-Drawing-Board Presentation, 36th Aerospace Sciences Meeting and Exhibit Reno, NV, January 1998.en_US
dc.description.abstractFully reusable two-stage-to-orbit vehicle designs that incorporate ‘branching’ trajectories during their ascent are of current interest in the advanced launch vehicle design community. Unlike expendable vehicle designs, the booster of a reusable system must fly to a designated landing site after staging. Therefore, both the booster return branch and the orbital upper stage branch along with the lower ascent trajectory are of interest after the staging point and must be simultaneously optimized in order to achieve an overall system objective. Current and notable designs in this class include the U. S. Air Force Space Operations Vehicle designs with their ‘pop-up’ Trajectories and NASA’s proposed liquid flyback booster designs (Space Shuttle solid booster upgrade). The solution to this problem using an industry standard trajectory optimization code (POST) typically requires at least two separate computer jobs — one for the orbital branch from the ground to orbit and one for the booster branch from the staging point to the landing site. However, these two jobs are tightly coupled and their data requirements are interdependent. This paper expounds upon the research necessary to improve the accuracy, computational efficiency, and data consistency with which this twin job problem can be solved. In particular, the proposed methods originate from the field of Multidisciplinary Design Optimization (MDO). The planned research program is outlined, and preliminary results are reported
dc.format.extent117906 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherGeorgia Institute of Technologyen_US
dc.relation.ispartofseriesSSDL ;en_US
dc.subjectReusable launch vehicles
dc.subjectMultidisciplinary design optimization
dc.subjectTrajectory analysis
dc.subjectProgram to Optimize Simulated Trajectories (POST)
dc.subjectTrajectory optimization
dc.titleMultidisciplinary Optimization Techniques for Branching Trajectoriesen_US
dc.typePaper


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record