Visual SLAM with a Multi-Camera Rig
Abstract
Camera-based simultaneous localization and mapping or visual SLAM has received much attention recently. Typically single cameras, multiple cameras in a stereo setup or omni-directional cameras are used. We propose a different approach, where multiple cameras can be mounted on a robot in an arbitrary configuration. Allowing the cameras to face in different directions yields better constraints than single cameras or stereo setups can provide, simplifying the reconstruction of large-scale environments. And in contrast to omni-directional sensors, the available resolution can be focused on areas of interest depending on the application. We describe a sparse SLAM approach that is suitable for real-time reconstruction from such multi-camera configurations. We have implemented the system and show experimental results in a large-scale environment, using a custom made eight-camera rig.