School of Electrical and Computer Engineering Theses and Dissertations
http://hdl.handle.net/1853/5989
Original work by students in the School of Electrical and Computer EngineeringTue, 31 May 2016 12:07:21 GMT2016-05-31T12:07:21ZDesign of Diffractive Optical Elements Through Low-dimensional Optimization
http://hdl.handle.net/1853/54614
Design of Diffractive Optical Elements Through Low-dimensional Optimization
Peters, David W.
The simulation of diffractive optical structures allows for the efficient testing of a large number of structures without having to actually fabricate these devices. Various forms of analysis of these structures have been done through computer programs in the past. However, programs that can actually design a structure to perform a given task are
very limited in scope. Optimization of a structure can be a task that is very processor time intensive, particularly if the optimization space has many dimensions. This thesis describes the creation of a computer program that is able to find an optimal structure while maintaining a low-dimensional search space, thus greatly reducing the processor time required to find the solution. The program can design the optimal structure for a wide variety of planar optical devices that conform to the weakly-guiding approximation with an efficient code that incorporates the low-dimensional search space concept. This
work is the first use of an electromagnetic field solver inside of an optimization loop for the design of an optimized diffractive-optic structure.
Sun, 01 Jul 2001 00:00:00 GMThttp://hdl.handle.net/1853/546142001-07-01T00:00:00ZPeters, David W.The simulation of diffractive optical structures allows for the efficient testing of a large number of structures without having to actually fabricate these devices. Various forms of analysis of these structures have been done through computer programs in the past. However, programs that can actually design a structure to perform a given task are
very limited in scope. Optimization of a structure can be a task that is very processor time intensive, particularly if the optimization space has many dimensions. This thesis describes the creation of a computer program that is able to find an optimal structure while maintaining a low-dimensional search space, thus greatly reducing the processor time required to find the solution. The program can design the optimal structure for a wide variety of planar optical devices that conform to the weakly-guiding approximation with an efficient code that incorporates the low-dimensional search space concept. This
work is the first use of an electromagnetic field solver inside of an optimization loop for the design of an optimized diffractive-optic structure.Super - cordic: Low delay cordic architectures for computing complex functions
http://hdl.handle.net/1853/54475
Super - cordic: Low delay cordic architectures for computing complex functions
Supe, Tushar
This thesis proposes an optimized Co-ordinate Rotation Digital Computer (CORDIC) algorithm in the rotation and extended vectoring mode of the circular co-ordinate system. The CORDIC algorithm computes the values of trigonometric functions and their inverses. The proposed algorithm provides the result with a lower overall latency than existing systems. This is done by using redundant representations and approximations of the required direction and angle of each rotation. The algorithm has been designed to provide the result in a fixed number of iterations $n$ for the rotation mode and $3\lceil n/2 \rceil + \lfloor n/2 \rfloor$ for the extended vectoring mode; where, $n$ is a design parameter. In each iteration, the algorithm performs between 0 and $p/n$ parallel rotations, where, $p$ is the number of precision bits and $n$ is the selected number of iterations. A technique to handle the scaling factor compensation for such an algorithm is proposed. The results of the functional verification for different values of $n$ and an estimation of the overall latency are presented. Based on the results, guidelines to choosing a value of $n$ to meet the required performance have also been presented.
Fri, 04 Dec 2015 00:00:00 GMThttp://hdl.handle.net/1853/544752015-12-04T00:00:00ZSupe, TusharThis thesis proposes an optimized Co-ordinate Rotation Digital Computer (CORDIC) algorithm in the rotation and extended vectoring mode of the circular co-ordinate system. The CORDIC algorithm computes the values of trigonometric functions and their inverses. The proposed algorithm provides the result with a lower overall latency than existing systems. This is done by using redundant representations and approximations of the required direction and angle of each rotation. The algorithm has been designed to provide the result in a fixed number of iterations $n$ for the rotation mode and $3\lceil n/2 \rceil + \lfloor n/2 \rfloor$ for the extended vectoring mode; where, $n$ is a design parameter. In each iteration, the algorithm performs between 0 and $p/n$ parallel rotations, where, $p$ is the number of precision bits and $n$ is the selected number of iterations. A technique to handle the scaling factor compensation for such an algorithm is proposed. The results of the functional verification for different values of $n$ and an estimation of the overall latency are presented. Based on the results, guidelines to choosing a value of $n$ to meet the required performance have also been presented.Enhancing microprocessor power efficiency through clock-data compensation
http://hdl.handle.net/1853/54471
Enhancing microprocessor power efficiency through clock-data compensation
Subramanian, Ashwin Srinath
The Smartphone revolution and the Internet of Things (IoTs) have triggered rapid advances in complex system-on-chips (SoCs) that increasing provide more functionality within a tight power budget. Highly power efficient on die switched-capacitor voltage regulators suffer from large output voltage ripple preventing their widespread use in modern integrated circuits. With technology scaling and increasing architectural complexity, the number of transistors switching in a power domain is growing rapidly leading to major issues with respect to voltage noise. The large voltage and frequency guard-bands present in current microprocessor designs to combat voltage noise both degrade the performance and erode the energy efficiency of the design. In an effort to reduce guard-bands, adaptive clocking based systems combat the problem of voltage noise by adjusting the clock frequency during a voltage droop to avoid timing failure. This thesis presents an integrated power management and clocking scheme that utilizes clock-data compensation to achieve adaptive clocking. The design is capable of automatically con figuring the supply voltage given a target clock frequency for the load circuit. Furthermore, during a voltage droop the design adjusts clock frequency to meet critical path timing margins while simultaneously increasing the current delivered to the load to recover from the droop. The design was implemented in IBM's 130nm technology and simulation results show that the design is able to clock the load circuit from 30 MHz to 800 Mhz with current efficiencies as high as 97%.
Fri, 04 Dec 2015 00:00:00 GMThttp://hdl.handle.net/1853/544712015-12-04T00:00:00ZSubramanian, Ashwin SrinathThe Smartphone revolution and the Internet of Things (IoTs) have triggered rapid advances in complex system-on-chips (SoCs) that increasing provide more functionality within a tight power budget. Highly power efficient on die switched-capacitor voltage regulators suffer from large output voltage ripple preventing their widespread use in modern integrated circuits. With technology scaling and increasing architectural complexity, the number of transistors switching in a power domain is growing rapidly leading to major issues with respect to voltage noise. The large voltage and frequency guard-bands present in current microprocessor designs to combat voltage noise both degrade the performance and erode the energy efficiency of the design. In an effort to reduce guard-bands, adaptive clocking based systems combat the problem of voltage noise by adjusting the clock frequency during a voltage droop to avoid timing failure. This thesis presents an integrated power management and clocking scheme that utilizes clock-data compensation to achieve adaptive clocking. The design is capable of automatically con figuring the supply voltage given a target clock frequency for the load circuit. Furthermore, during a voltage droop the design adjusts clock frequency to meet critical path timing margins while simultaneously increasing the current delivered to the load to recover from the droop. The design was implemented in IBM's 130nm technology and simulation results show that the design is able to clock the load circuit from 30 MHz to 800 Mhz with current efficiencies as high as 97%.Spatial and temporal ionospheric monitoring using broadband sferic measurements
http://hdl.handle.net/1853/54469
Spatial and temporal ionospheric monitoring using broadband sferic measurements
McCormick, Jackson C.
The objective of this thesis is to use radio emissions from lightning, known as `radio atmospherics' or `sferics', to study the temporal and spatial variation of the lower ionosphere, a layer of ionized atmosphere beginning at $\sim$70 km altitude (D-region). Very Low Frequency (VLF, 3$-$30kHz) radio waves are a useful diagnostic for lower ionospheric monitoring due to their reflection from this region and global propagation. Traditionally, the lower ionosphere has been sensed using single-frequency VLF transmitters allowing for analysis of a single propagation path, as there are only a small number of transmitters.
A lightning stroke, however, releases an intense amount of impulsive broadband VLF radio energy in the form of a sferic, which propagates through the Earth-ionosphere waveguide. Lightning is globally distributed and very frequent, so a sferic is therefore also a useful diagnostic of the D-region. This is true both for ambient or quiet conditions, and for ionospheric perturbations such as solar flare x-ray bursts. Lightning strokes effectively act as separate VLF transmitting sources. As such, they uniquely provide the ability to add a spatial component to ionospheric remote sensing, in addition to their broadband signature which cannot be achieved with man-made transmitters.
We describe the methods of processing in detail. As an example, we analyze a solar flare during which time there is a significant change in magnitude and frequency content of sferics. This disturbance varies with distance from the source, as well as time. We describe the methods of processing in detail, and show results at Palmer Station, Antarctica for both a quiet and active solar day.
Fri, 04 Dec 2015 00:00:00 GMThttp://hdl.handle.net/1853/544692015-12-04T00:00:00ZMcCormick, Jackson C.The objective of this thesis is to use radio emissions from lightning, known as `radio atmospherics' or `sferics', to study the temporal and spatial variation of the lower ionosphere, a layer of ionized atmosphere beginning at $\sim$70 km altitude (D-region). Very Low Frequency (VLF, 3$-$30kHz) radio waves are a useful diagnostic for lower ionospheric monitoring due to their reflection from this region and global propagation. Traditionally, the lower ionosphere has been sensed using single-frequency VLF transmitters allowing for analysis of a single propagation path, as there are only a small number of transmitters.
A lightning stroke, however, releases an intense amount of impulsive broadband VLF radio energy in the form of a sferic, which propagates through the Earth-ionosphere waveguide. Lightning is globally distributed and very frequent, so a sferic is therefore also a useful diagnostic of the D-region. This is true both for ambient or quiet conditions, and for ionospheric perturbations such as solar flare x-ray bursts. Lightning strokes effectively act as separate VLF transmitting sources. As such, they uniquely provide the ability to add a spatial component to ionospheric remote sensing, in addition to their broadband signature which cannot be achieved with man-made transmitters.
We describe the methods of processing in detail. As an example, we analyze a solar flare during which time there is a significant change in magnitude and frequency content of sferics. This disturbance varies with distance from the source, as well as time. We describe the methods of processing in detail, and show results at Palmer Station, Antarctica for both a quiet and active solar day.