School of Mechanical Engineering Theses and Dissertations
http://hdl.handle.net/1853/5991
Original work by students in the School of Mechanical EngineeringMon, 21 Apr 2014 12:14:55 GMT2014-04-21T12:14:55ZInvestigation of fuel cycle for a sub-critical fusion-fission hybrid breeder reactor
http://hdl.handle.net/1853/50407
Investigation of fuel cycle for a sub-critical fusion-fission hybrid breeder reactor
Stewart, Christopher L.
The SABR fusion-fission hybrid concept for a fast burner reactor, which combines the IFR-PRISM fast reactor technology and the ITER tokamak physics and fusion technology, is adapted for a fusion-fission hybrid reactor, designated SABrR. SABrR is a sodium-cooled 3000 MWth reactor fueled with U-Pu-10Zr. For the chosen fuel and core geometry, two configurations of neutron reflector and tritium breeding structures are investigated: one which emphasizes a high tritium production rate and the other which emphasizes a high fissile production rate. Neutronics calculations are performed using the ERANOS 2.0 code package, which was developed in order to model the Phenix and SuperPhenix reactors. Both configurations are capable of producing fissile breeding ratios of about 1.3 while producing enough tritium to remain tritium-self-sufficient throughout the burnup cycle; in addition, the major factors which limit metal fuel residence time, fuel burnup and radiation damage to the cladding material, are modest.
Tue, 19 Nov 2013 00:00:00 GMThttp://hdl.handle.net/1853/504072013-11-19T00:00:00ZStewart, Christopher L.The SABR fusion-fission hybrid concept for a fast burner reactor, which combines the IFR-PRISM fast reactor technology and the ITER tokamak physics and fusion technology, is adapted for a fusion-fission hybrid reactor, designated SABrR. SABrR is a sodium-cooled 3000 MWth reactor fueled with U-Pu-10Zr. For the chosen fuel and core geometry, two configurations of neutron reflector and tritium breeding structures are investigated: one which emphasizes a high tritium production rate and the other which emphasizes a high fissile production rate. Neutronics calculations are performed using the ERANOS 2.0 code package, which was developed in order to model the Phenix and SuperPhenix reactors. Both configurations are capable of producing fissile breeding ratios of about 1.3 while producing enough tritium to remain tritium-self-sufficient throughout the burnup cycle; in addition, the major factors which limit metal fuel residence time, fuel burnup and radiation damage to the cladding material, are modest.Characterization and measurements of advanced vertically aligned carbon nanotube based thermal interface materials
http://hdl.handle.net/1853/50386
Characterization and measurements of advanced vertically aligned carbon nanotube based thermal interface materials
McNamara, Andrew J.
It has been known that a significant part of the thermal budget of an electronic package is occupied by the thermal interface material which is used to join different materials. Research in reducing this resistance through the use of vertically aligned multiwall carbon nanotube based thermal interface materials is presented. Transferred arrays anchored to substrates using thermal conductive adhesive and solder was analyzed through a steady-state infrared measurement technique. The thermal performance of the arrays as characterized through the measurement system is shown to be comparable and better than currently available interface material alternatives. Furthermore, a developed parametric model of the thermal conductive adhesive anchoring scheme demonstrates even greater potential for improved thermal resistances. Additionally, a developed transient infrared measurement system based on single point high speed temperature measurements and full temperature mappings is shown to give increased information into the thermophysical properties of a multilayer sample than other steady-state techniques.
Mon, 18 Nov 2013 00:00:00 GMThttp://hdl.handle.net/1853/503862013-11-18T00:00:00ZMcNamara, Andrew J.It has been known that a significant part of the thermal budget of an electronic package is occupied by the thermal interface material which is used to join different materials. Research in reducing this resistance through the use of vertically aligned multiwall carbon nanotube based thermal interface materials is presented. Transferred arrays anchored to substrates using thermal conductive adhesive and solder was analyzed through a steady-state infrared measurement technique. The thermal performance of the arrays as characterized through the measurement system is shown to be comparable and better than currently available interface material alternatives. Furthermore, a developed parametric model of the thermal conductive adhesive anchoring scheme demonstrates even greater potential for improved thermal resistances. Additionally, a developed transient infrared measurement system based on single point high speed temperature measurements and full temperature mappings is shown to give increased information into the thermophysical properties of a multilayer sample than other steady-state techniques.Investigation of stiffness as a biomarker in ovarian cancer cells
http://hdl.handle.net/1853/50381
Investigation of stiffness as a biomarker in ovarian cancer cells
Xu, Wenwei
In this dissertation, we developed cell stiffness as a biomarker in ovarian cancer for the purpose of grading metastatic potential. By measuring single cell stiffness with atomic force microscopy and quantifying in vitro invasiveness of healthy and cancerous ovarian cells, we demonstrated that cancerous ovarian cells have reduced stiffness compared to the healthy ones and invasive ovarian cancer cells are more deformable than noninvasive ovarian cancer cells. The difference in cell stiffness between two genetically similar cell lines was attributed to actin-mediated cytoskeletal remodeling as revealed by comparative gene expression profile analysis, and was further confirmed by fluorescent visualization of actin cytoskeletal structures. The actin cytoskeletons were innovatively quantified and correlates with cell stiffness distributions, further implicating actin-mediated cytoskeletal remodeling in stiffness alteration from the perspective of structure-property relationship. The correlation between stiffness and metastatic potential was also demonstrated in pancreatic cancer cell line AsPC-1, which shows reduced invasivess and increased stiffness upon treatment with N-acetyl-L-cysteine (NAC), a well known antioxidant, reactive oxygen species (ROS), scavenger and glutathione precursor. The correlation between cell stiffness and metastatic potential as demonstrated in ovarian and pancreatic cancer cells indicated that mechanical stiffness may be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells, and might be useful clinically with the development of rapid biomechanical assaying techniques.
We have also investigated the stiffness evolution through progression of the cell cycle for the healthy ovarian phenotype and the invasive cancer ovarian phenotype, and found that the healthy phenotype at G1 phase are significantly stiffer than other single cells except the invasive phenotype at late mitosis; other groups are not significantly different from each other.
We have also investigated intracellular heterogeneity and mechanical nonlinearity in single cells. To this end, we developed a methodology to analyze the deformation-dependent mechanical nonlinearity using a pointwise Hertzian method, and tested the method on ultrathin polydimethylsiloxane (PDMS) films which underwent extremely large strains (greater than 50%). Mechanical stiffening due to large strain and geometrical confinement were observed. The onset of nonlinearity or mechanical stiffening occurs at 45% of the film thickness, the geometry induced stiffening causes an increase in stiffness which shows a strong power law dependence on film thickness. By applying the pointwise Hertzian method on stiffness measurements with AFM that were collected on living cells, we also investigated the nonlinear and heterogeneous mechanics of single cells, since attachment of cells to stiff substrate during indentation may impact their mechanical responses. Even under natural biological conditions, cells confined in narrow spaces may experience heightened mechanical stiffness. Through indentation-dependent force mapping, analysis of the local cell stiffness demonstrated spatial variation. The results indicated that the mechanical properties of single cells are highly nonlinear and are dependent upon the subcellular features under the applied force as well as the dimensions of the cellular material.
We identified single cell stiffness as a potential biomarker of the metastatic potential in ovarian cancer, and quantified the effect of geometrical confinement on cell mechanics. The results presented in this dissertation not only made contributions to the development of accurate, non-invasive clinical methods to estimate metastatic potential of ovarian and perhaps other types of cancer, but also shed light on the intracellular mechanical information by developing new techniques to quantify the effect of geometry on cell mechanics.
Mon, 18 Nov 2013 00:00:00 GMThttp://hdl.handle.net/1853/503812013-11-18T00:00:00ZXu, WenweiIn this dissertation, we developed cell stiffness as a biomarker in ovarian cancer for the purpose of grading metastatic potential. By measuring single cell stiffness with atomic force microscopy and quantifying in vitro invasiveness of healthy and cancerous ovarian cells, we demonstrated that cancerous ovarian cells have reduced stiffness compared to the healthy ones and invasive ovarian cancer cells are more deformable than noninvasive ovarian cancer cells. The difference in cell stiffness between two genetically similar cell lines was attributed to actin-mediated cytoskeletal remodeling as revealed by comparative gene expression profile analysis, and was further confirmed by fluorescent visualization of actin cytoskeletal structures. The actin cytoskeletons were innovatively quantified and correlates with cell stiffness distributions, further implicating actin-mediated cytoskeletal remodeling in stiffness alteration from the perspective of structure-property relationship. The correlation between stiffness and metastatic potential was also demonstrated in pancreatic cancer cell line AsPC-1, which shows reduced invasivess and increased stiffness upon treatment with N-acetyl-L-cysteine (NAC), a well known antioxidant, reactive oxygen species (ROS), scavenger and glutathione precursor. The correlation between cell stiffness and metastatic potential as demonstrated in ovarian and pancreatic cancer cells indicated that mechanical stiffness may be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells, and might be useful clinically with the development of rapid biomechanical assaying techniques.
We have also investigated the stiffness evolution through progression of the cell cycle for the healthy ovarian phenotype and the invasive cancer ovarian phenotype, and found that the healthy phenotype at G1 phase are significantly stiffer than other single cells except the invasive phenotype at late mitosis; other groups are not significantly different from each other.
We have also investigated intracellular heterogeneity and mechanical nonlinearity in single cells. To this end, we developed a methodology to analyze the deformation-dependent mechanical nonlinearity using a pointwise Hertzian method, and tested the method on ultrathin polydimethylsiloxane (PDMS) films which underwent extremely large strains (greater than 50%). Mechanical stiffening due to large strain and geometrical confinement were observed. The onset of nonlinearity or mechanical stiffening occurs at 45% of the film thickness, the geometry induced stiffening causes an increase in stiffness which shows a strong power law dependence on film thickness. By applying the pointwise Hertzian method on stiffness measurements with AFM that were collected on living cells, we also investigated the nonlinear and heterogeneous mechanics of single cells, since attachment of cells to stiff substrate during indentation may impact their mechanical responses. Even under natural biological conditions, cells confined in narrow spaces may experience heightened mechanical stiffness. Through indentation-dependent force mapping, analysis of the local cell stiffness demonstrated spatial variation. The results indicated that the mechanical properties of single cells are highly nonlinear and are dependent upon the subcellular features under the applied force as well as the dimensions of the cellular material.
We identified single cell stiffness as a potential biomarker of the metastatic potential in ovarian cancer, and quantified the effect of geometrical confinement on cell mechanics. The results presented in this dissertation not only made contributions to the development of accurate, non-invasive clinical methods to estimate metastatic potential of ovarian and perhaps other types of cancer, but also shed light on the intracellular mechanical information by developing new techniques to quantify the effect of geometry on cell mechanics.Transient reduced-order convective heat transfer modeling for a data center
http://hdl.handle.net/1853/50380
Transient reduced-order convective heat transfer modeling for a data center
Ghosh, Rajat
A measurement-based reduced-order heat transfer modeling framework is developed to optimize cooling costs of dynamic and virtualized data centers. The reduced-order model is based on a proper orthogonal decomposition-based model order reduction technique. For data center heat transfer modeling, the framework simulates air temperatures and CPU temperatures as a parametric response surface with different cooling infrastructure design variables as the input parameters. The parametric framework enables an efficient design optimization tool and is used to solve several important problems related to energy-efficient thermal design of data centers.
The first of these problems is about determining optimal response time during emergencies such as power outages in data centers. To solve this problem, transient air temperatures are modeled with time as a parameter. This parametric prediction framework is useful as a near-real-time thermal prognostic tool.
The second problem pertains to reducing temperature monitoring cost in data centers. To solve this problem, transient air temperatures are modeled with spatial location as the parameter. This parametric model improves spatial resolution of measured temperature data and thereby reduces sensor requisition for transient temperature monitoring in data centers.
The third problem is related to determining optimal cooling set points in response to dynamically-evolving heat loads in a data center. To solve this problem, transient air temperatures are modeled with heat load and time as the parameters. This modeling framework is particularly suitable for life-cycle design of data center cooling infrastructure.
The last problem is related to determining optimal cooling set points in response to dynamically-evolving computing workload in a virtualized data center. To solve this problem, transient CPU temperatures under a given computing load profile are modeled with cooling resource set-points as the parameters.
Mon, 18 Nov 2013 00:00:00 GMThttp://hdl.handle.net/1853/503802013-11-18T00:00:00ZGhosh, RajatA measurement-based reduced-order heat transfer modeling framework is developed to optimize cooling costs of dynamic and virtualized data centers. The reduced-order model is based on a proper orthogonal decomposition-based model order reduction technique. For data center heat transfer modeling, the framework simulates air temperatures and CPU temperatures as a parametric response surface with different cooling infrastructure design variables as the input parameters. The parametric framework enables an efficient design optimization tool and is used to solve several important problems related to energy-efficient thermal design of data centers.
The first of these problems is about determining optimal response time during emergencies such as power outages in data centers. To solve this problem, transient air temperatures are modeled with time as a parameter. This parametric prediction framework is useful as a near-real-time thermal prognostic tool.
The second problem pertains to reducing temperature monitoring cost in data centers. To solve this problem, transient air temperatures are modeled with spatial location as the parameter. This parametric model improves spatial resolution of measured temperature data and thereby reduces sensor requisition for transient temperature monitoring in data centers.
The third problem is related to determining optimal cooling set points in response to dynamically-evolving heat loads in a data center. To solve this problem, transient air temperatures are modeled with heat load and time as the parameters. This modeling framework is particularly suitable for life-cycle design of data center cooling infrastructure.
The last problem is related to determining optimal cooling set points in response to dynamically-evolving computing workload in a virtualized data center. To solve this problem, transient CPU temperatures under a given computing load profile are modeled with cooling resource set-points as the parameters.