Enabling Large-Scale Multicast Simulation by Reducing Memory Requirements

Show simple item record

dc.contributor.author Xu, Donghua
dc.contributor.author Riley, George F.
dc.contributor.author Ammar, Mostafa H. (Mostafa Hamed)
dc.contributor.author Fujimoto, Richard M.
dc.date.accessioned 2006-11-02T20:31:33Z
dc.date.available 2006-11-02T20:31:33Z
dc.date.issued 2003-06
dc.identifier.uri http://hdl.handle.net/1853/12302
dc.description ©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. en
dc.description Presented at the Workshop on Parallel and Distributed Simulation (PADS), June 2003
dc.description.abstract The simulation of large–scale multicast networks often requires a significant amount of memory that can easily exceed the capacity of current computers, both because of the inherently large amount of state necessary to simulate message routing and because of design oversights in the multicast portion of existing simulators. In this paper we describe three approaches to substantially reduce the memory required by multicast simulations: 1) We introduce a novel technique called “negative forwarding table” to compress mutlicast routing state. 2) We aggregate the routing state objects from one replicator per router per group per source to one replicator per router. 3) We employ the NIx– Vector technique to replace the original unicast IP routing table. We implemented these techniques in the ns2 simulator to demonstrate their effectiveness. Our experiments show that these techniques enable packet level multicast simulations on a scale that was previously unachievable on modern workstations using ns2. en
dc.format.extent 206295 bytes
dc.format.mimetype application/pdf
dc.language.iso en_US en
dc.publisher Georgia Institute of Technology en
dc.subject IP networks en
dc.subject Computational complexity en
dc.subject Digital simulation en
dc.subject Multicast communication en
dc.subject Storage management en
dc.subject Telecommunication computing en
dc.subject Telecommunication network routing en
dc.title Enabling Large-Scale Multicast Simulation by Reducing Memory Requirements en
dc.type Proceedings en
dc.contributor.corporatename Georgia Institute of Technology. College of Computing
dc.contributor.corporatename Georgia Institute of Technology. School of Electrical and Computer Engineering
dc.publisher.original Institute of Electrical and Electronics Engineers, Inc., New York


Files in this item

Files Size Format View
MANIACS_13.pdf 201.4Kb PDF View/ Open

This item appears in the following Collection(s)

Show simple item record