A Energy Efficient Approach to Processing Spatial Alarms on Mobile Clients

Show full item record

Please use this identifier to cite or link to this item: http://hdl.handle.net/1853/25363

Title: A Energy Efficient Approach to Processing Spatial Alarms on Mobile Clients
Author: Murugappan, Anand ; Liu, Ling
Abstract: Many on a daily basis use time based alarms. Spatial alarms extend the very same idea to location-based triggers, which are fired whenever a mobile user enters the spatial region of the location alarms. Spatial alarms provide critical capabilities for many mobile location based applications ranging from personal assistants, inventory tracking to industrial safety warning systems. In this paper we present an energy efficient framework for processing spatial alarms on mobile clients, while maintaining low computation and storage costs. Our approach to spatial alarms provides two systematic methods for minimizing energy consumption on mobile clients. First, we introduce the concept of safe distance to reduce the number of unnecessary mobile client wakeups for spatial alarm evaluation. This mechanism not only reduces the amount of unnecessary processing of the spatial alarms but also significantly minimizes the energy consumption on mobile clients, compared to periodic wakeups, while preserving the accuracy and timeliness of the spatial alarms. Second, we develop a suite of techniques for minimizing the number of location triggers to be checked for spatial alarm evaluation upon each wakeup. This further reduces the computation cost and energy expenditure on mobile clients. We evaluate the scalability and energy-efficiency of our approach using a road network simulator. Our client based framework for spatial alarms offers significant improvements on both system performance and battery lifetime of mobile clients, while maintaining high quality of spatial alarm services, especially compared to the conventional approach of periodic wakeup and checking all alarms upon wakeup.
Type: Technical Report
URI: http://hdl.handle.net/1853/25363
Date: 2008
Contributor: Georgia Institute of Technology. College of Computing
Relation: CERCS ; GIT-CERCS-08-03
Publisher: Georgia Institute of Technology
Subject: Location triggers
Road network
Safe distance
Spatial alarms

All materials in SMARTech are protected under U.S. Copyright Law and all rights are reserved, unless otherwise specifically indicated on or in the materials.

Files in this item

Files Size Format View
git-cercs-08-03.pdf 2.042Mb PDF View/ Open

This item appears in the following Collection(s)

Show full item record