Blocked Plane Rotations for Band Reduction and Sparse SVD

Show full item record

Please use this identifier to cite or link to this item:

Title: Blocked Plane Rotations for Band Reduction and Sparse SVD
Author: Rajamanickam, Siva
Abstract: With the success of Basic Linear Algebra Subroutines (BLAS) in using the memory efficiently, the algorithms with vector operations (BLAS2) have given way to algorithms with matrix operations (BLAS3). In some cases, BLAS3 based algorithms are successful even with the cost of doing additional floating point operations and using additional memory. In this talk, I will talk about two problems where algorithms with vector operations when combined with blocking can perform better than BLAS3 based algorithms. Band reduction methods are mainly used in computing the eigen value decomposition and singular value decomposition of band matrices. In the first part of this talk, I will outline a blocking scheme for plane rotations. The blocked plane rotations when coupled with a pipelining scheme leads to fewer floating point operations and memory usage than the BLAS3 based band reduction methods. The blocked method is also able to extract the same performance benefits from the cache as the BLAS3 based methods leading to a faster band reduction method. I will also show how we can exploit the zeros while finding the eigen and singular vectors. In the second part of the talk, I will introduce a method for computing the bidiagonalization of a sparse upper triangular matrix R. In this method, we exploit the sparsity of R and use plane rotations to reduce it to the bidiagonal form. We choose the rotations to minimize the fill generated in R itself. I will show how to extend this method to use dynamic blocking and the pipelining scheme to arrive at an efficient R-bidiagonalization method for computing the sparse SVD.
Description: Siva Rajamanickam, PhD candidate in the CISE department at the University of Florida presented a lecture on August 26, 2009 from 2 to 3 pm in room 1116E of the Klaus Advanced Computing Building. HPC Lecture
Type: Lecture
Date: 2009-08-26
Contributor: University of Florida
Georgia Institute of Technology. School of Computational Science and Engineering
Publisher: Georgia Institute of Technology
Subject: Sparse SVD
Band reduction
Sparse direct methods

All materials in SMARTech are protected under U.S. Copyright Law and all rights are reserved, unless otherwise specifically indicated on or in the materials.

Files in this item

Files Size Format View Description
rajamanickam.mp4 169.6Mb MPEG-4 video View/ Open Download Video
rajamanickam_streaming.html 924bytes HTML View/ Open Streaming Video

This item appears in the following Collection(s)

Show full item record