Quantitative Assessment of Human Control on Landing Trajectory Design

Show full item record

Please use this identifier to cite or link to this item: http://hdl.handle.net/1853/38504

Title: Quantitative Assessment of Human Control on Landing Trajectory Design
Author: Chua, Zarrin K.
Abstract: An increased thirst for scientific knowledge and a desire to advance humanity's presence in space prompts the need for improved technology to send crewed vehicles to places such as the Moon, Mars, and nearby passing asteroids. Landing at any of these locations will require vehicle capabilities greater than that previously used during the Apollo program or those applied in Low Earth Orbit. In particular, the vehicle and the on-board crew must be capable of executing precision landing in sub-optimal landing conditions during time-critical, high-stakes mission scenarios, such as Landing Point Designation (LPD) , or the critical phase of determining the vehicle's final touchdown point. Most proposed solutions involve automated control of landing vehicles, accepting no input from the on-board crew - effectively relegating them to payload. While this method is satisfactory for some missions, an automation-only approach during this critical mission phase may be placing the system at a disadvantage by neglecting the human capability of [what?]. Therefore, the landing system may result in a lack of dynamic flexibility to unexpected landing terrain or in-flight events. It is likely that executing LPD will require an ideal distribution of authority between the on-board crew and an automated landing system. However, this distribution is application-specific and not easily calculated. Current science does not provide enough detailed or explicit theories regarding allocation of automation, and the advantages provided by biological and digital pilots (either acting as the sole authoritarian or as a coordinated team) are difficult to describe in quantitative measures. Despite previous experience in piloting vehicles on the Moon, few cognitive models describing the decision-making process exist. The specialization of the pilot and the application pose significant practical challenges in regular observations in the target environment. The lack of quantitative knowledge results in predominantly qualitative design trade-offs during pre-mission planning. While qualitative analyses have proven to be useful to the mission designer, an understanding founded on quantitative metrics regarding the relationship between human control and mission design will provide the sufficient supplementary information necessary for overall success. In particular, increased knowledge of the impact of human control on landing trajectory design would allow for more efficient and thorough conceptual mission planning. This knowledge would allow visualization of the flight envelope possible for various degrees of human control and help establish conceptual estimations of critical mission parameters such as fuel consumption or task completion time. This report details an experiment undertaken to further understanding of the impact of moderate degrees of human control on landing trajectory design or vice versa during LPD. This report briefly summarizes current understanding and modeling of moderate control during LPD and similar applications, reviews previous and current efforts in implementing LPD, examines the pilot study to observe subjects in a simulated LPD task, and discusses the significance of findings from the pilot study.
Type: Technical Report
URI: http://hdl.handle.net/1853/38504
Date: 2010-12-02
Publisher: Georgia Institute of Technology
Subject: Landing trajectory design
Landing Point Designation
Human control

All materials in SMARTech are protected under U.S. Copyright Law and all rights are reserved, unless otherwise specifically indicated on or in the materials.

Files in this item

Files Size Format View
Chua_LightingEffects_single.pdf 2.590Mb PDF View/ Open

This item appears in the following Collection(s)

Show full item record