3D reconfiguration using graph grammars for modular robotics

Show full item record

Please use this identifier to cite or link to this item: http://hdl.handle.net/1853/43742

Title: 3D reconfiguration using graph grammars for modular robotics
Author: Pickem, Daniel
Abstract: The objective of this thesis is to develop a method for the reconfiguration of three-dimensional modular robots. A modular robot is composed of simple individual building blocks or modules. Each of these modules needs to be controlled and actuated individually in order to make the robot perform useful tasks. The presented method allows us to reconfigure arbitrary initial configurations of modules into any pre-specified target configuration by using graph grammar rules that rely on local information only. Local in a sense that each module needs just information from neighboring modules in order to decide its next reconfiguration step. The advantage of this approach is that the modules do not need global knowledge about the whole configuration. We propose a two stage reconfiguration process composed of a centralized planning stage and a decentralized, rule-based reconfiguration stage. In the first stage, paths are planned for each module and then rewritten into a ruleset, also called a graph grammar. Global knowledge about the configuration is available to the planner. In stage two, these rules are applied in a decentralized fashion by each node individually and with local knowledge only. Each module can check the ruleset for applicable rules in parallel. This approach has been implemented in Matlab and currently, we are able to generate rulesets for arbitrary homogeneous input configurations.
Type: Thesis
URI: http://hdl.handle.net/1853/43742
Date: 2011-12-16
Publisher: Georgia Institute of Technology
Subject: Rule-based reconfiguration
Self-reconfiguration
Distributed robotics
Graph grammars
Self-assembly
Rulesets
Robots
Adaptive control systems
Robotics
Department: Electrical and Computer Engineering
Advisor: Committee Chair: Magnus Egerstedt; Committee Member: Jeff Shamma; Committee Member: Patricio Antonio Vela
Degree: MS

All materials in SMARTech are protected under U.S. Copyright Law and all rights are reserved, unless otherwise specifically indicated on or in the materials.

Files in this item

Files Size Format View
pickem_daniel_201205_mast.pdf 5.753Mb PDF View/ Open

This item appears in the following Collection(s)

Show full item record