Advanced Methods, Materials, and Devices for Microfluidics

Show full item record

Please use this identifier to cite or link to this item: http://hdl.handle.net/1853/5287

Title: Advanced Methods, Materials, and Devices for Microfluidics
Author: White, Celesta E.
Abstract: Advanced Methods, Materials, and Devices for Microfluidics Celesta E. White 217 Pages Directed by Dr. Clifford L. Henderson Microfluidics is a rapidly growing research area that has the potential to influence a variety of industries from clinical diagnostics to drug discovery. Unlike the microelectronics industry, where the current emphasis is on reducing the size of transistors, the field of microfluidics is focusing on making more complex systems of channels with more sophisticated fluid-handling capabilities, rather than reducing the size of the channels. While lab-on-a-chip devices have shown commercial success in a variety of biological applications such as electrophoretic separations and DNA sequencing, there has not been a significant amount of progress made in other potential impact areas for microfluidics such as clinical diagnostics, portable sensors, and microchemical reactors. These applications can benefit greatly from miniaturization, but advancement in these and many other areas has been limited by the inability or extreme difficulty in fabricating devices with complex fluidic networks interfaced with a variety of active and passive electrical and mechanical components. Several techniques exist for the fabrication of microfluidic devices, but these methods have significant limitations, and alternative fabrication approaches are currently desperately needed. One such method that shows promise for its ability to integrate the desired high levels of functionality utilizes thermally sacrificial materials as place holders. An encapsulating overcoat material provides structural stability and becomes the microchannel walls when the sacrificial material is removed from the channel through thermal decomposition. Disadvantages of this method, however, include numerous processing steps required for sacrificial layer patterning and elevated temperatures needed for the decomposition of initial sacrificial materials. These limitations keep this method from becoming an economical alternative for microfluidic device fabrication. The materials needed for this method to reach its full potential as a valid fabrication technology for m-TAS are not currently available, and it was a major focus of this work to develop and characterize new sacrificial materials, particularly photosensitive polycarbonate systems. In addition to the development of new sacrificial polymers, the framework for a working microfluidic device was developed to show that this concept will indeed provide significant advancements in the development of future generations of microfluidic systems. Finally, novel fabrication methods for microfluidics through combined imprinting and photopatterning of photosensitive sacrificial materials was demonstrated.
Type: Dissertation
URI: http://hdl.handle.net/1853/5287
Date: 2003-11-26
Publisher: Georgia Institute of Technology
Subject: Polycarbonates
Sacrificial materials
Microfluidics
Poly(propylene carbonate)
Photosensitive polycarbonates
Microelectromechanical systems
Polycarbonates
Microelectromechanical systems
Photosensitive polyimides
Department: Chemical Engineering
Advisor: Committee Chair: Henderson, Clifford L.; Committee Member: Bidstrup-Allen, Sue Ann; Committee Member: Kohl, Paul A.; Committee Member: Morris, Jeff; Committee Member: Sambanis, Athanassios; Committee Member: Schork, F. Joseph; Committee Member: Tolbert, Laren M.
Degree: Ph.D.

All materials in SMARTech are protected under U.S. Copyright Law and all rights are reserved, unless otherwise specifically indicated on or in the materials.

Files in this item

Files Size Format View
white_celesta_e_200312.pdf 7.546Mb PDF View/ Open

This item appears in the following Collection(s)

Show full item record